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Abstract Probing memory of a complex visual image within a few hundred milliseconds after 
its disappearance reveals significantly greater fidelity of recall than if the probe is delayed by as 
little as a second. Classically interpreted, the former taps into a detailed but rapidly decaying visual 
sensory or ‘iconic’ memory (IM), while the latter relies on capacity-limited but comparatively stable 
visual working memory (VWM). While iconic decay and VWM capacity have been extensively studied 
independently, currently no single framework quantitatively accounts for the dynamics of memory 
fidelity over these time scales. Here, we extend a stationary neural population model of VWM with 
a temporal dimension, incorporating rapid sensory-driven accumulation of activity encoding each 
visual feature in memory, and a slower accumulation of internal error that causes memorized features 
to randomly drift over time. Instead of facilitating read-out from an independent sensory store, an 
early cue benefits recall by lifting the effective limit on VWM signal strength imposed when multiple 
items compete for representation, allowing memory for the cued item to be supplemented with 
information from the decaying sensory trace. Empirical measurements of human recall dynamics 
validate these predictions while excluding alternative model architectures. A key conclusion is that 
differences in capacity classically thought to distinguish IM and VWM are in fact contingent upon a 
single resource-limited WM store.

eLife assessment
This study presents important insights into the dynamical process whereby sensory information is 
converted from stimulus-driven activity to a working memory representation from which the infor-
mation can be recalled later. The evidence supporting the claims is convincing, using detailed fits 
and model-comparison techniques applied to new and existing psychophysical data sets to evaluate 
a wide variety of potential mechanisms. The overall conclusion, that iconic memory and working 
memory are not distinct mechanisms but rather two slightly different regimes of the same circuitry, 
will be of interest to neuroscientists and psychologists studying sensory systems and/or working 
memory.

Introduction
Keeping relevant information in an easily accessible state is vital for adaptive behavior in dynamic 
environments. In the primate visual system, this requirement is met by visual working memory (VWM), 
the capacity to actively maintain visual information from milliseconds to seconds after a stimulus disap-
pears from view (D’Esposito and Postle, 2015; Pasternak and Greenlee, 2005; Ma et al., 2014; 
Bays et al., 2024). While the contents of VWM are frequently updated to reflect changes in the envi-
ronment and in behavioral priorities, the visual processing hierarchy itself introduces additional layers 
of dynamism (Barlow, 1981; Van Essen et al., 1992). The fidelity of representations therefore evolves 
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from the moment VWM starts accumulating evidence (Brunton et  al., 2013; Gold and Shadlen, 
2007) throughout the maintenance period until the information is used for action (Schneegans and 
Bays, 2018; Panichello et al., 2019; van Ede et al., 2019).

Nonetheless, within most theoretical frameworks, VWM is treated as a stationary process whereby 
representations are measured and modeled as fixed states of the system. One such model of WM 
is based on principles of neural population coding (Bays, 2014; Schneegans et al., 2020). In the 
Neural Resource model, visual information is encoded in the activity of a population of noisy feature-
selective neurons (Ma et al., 2006; Pouget et al., 2000). The spiking activity of the neural popula-
tion is constrained by normalization (Carandini and Heeger, 2011; Bays, 2015), such that the total 
activity is fixed but flexibly distributed between memoranda, implementing a form of limited memory 
resource. At retrieval, encoded stimulus values are reconstructed from the noisy spiking activity. This 
model has provided a quantitative account of patterns of recall error across a range of tasks and 
stimulus dimensions (Tomić and Bays, 2024; Bays and Taylor, 2018; Schneegans and Bays, 2017; 
Bays, 2016a; Tomić and Bays, 2018). However, despite its grounding in principles of neural coding, 
the basic architecture of the model lacks a temporal dimension to describe the dynamics of memory 
representations during encoding and maintenance.

Research on prolonged memory maintenance has demonstrated that the precision of stored repre-
sentations gradually deteriorates over time (e.g. Pertzov et  al., 2017; Rademaker et  al., 2018). 
Computational models attempting to account for these dynamics have often relied on principles of 
diffusion within an attractor network. In such a network, information is maintained in a sustained 
pattern of activity, which can be visualized as a ‘bump’ of activity centered on the stored value. Over 
time, the bump diffuses along the feature dimension due to random fluctuations in neural activity, 
leading to stochastic changes in the encoded feature value and a gradual loss of information (Burak 
and Fiete, 2012; Wimmer et al., 2014). Critically, the neural code diffuses without decay in signal 
strength. A growing body of empirical support, both at the behavioral (Schneegans and Bays, 2018) 
and neural level (Lim et al., 2019; Wolff et al., 2020), identifies diffusion as a key mechanism of 
memory deterioration.

In contrast to such gradual deterioration over longer retention intervals, studies that probed 
memory within a few hundred milliseconds of stimulus offset revealed a precipitous decrease in 
memory fidelity immediately after a stimulus disappears (Di Lollo and Dixon, 1988; Sperling, 1960; 
Bradley and Pearson, 2012; Pratte, 2018). This early superior recall was attributed to a high-capacity 
but short-lived form of storage termed iconic memory (IM) (Neisser, 1967). An implicit assumption 
has often been that the behavioral advantage of early cues derives from reading out information 
directly from IM and circumventing capacity limitations imposed by VWM, however, this idea has not 
been formally modeled or tested. At the neural level, IM is thought to be supported by a brief period 
of decaying neural activity in early visual areas following the response elicited by the visible stimulus 
(Priebe et al., 2002; Rolls and Tovee, 1994; Teeuwen et al., 2021; van Kerkoerle et al., 2017). 
In contrast to later memory dynamics arising due to noise accumulation, early changes in memory 
fidelity were supported by modulation of the neural signal strength. However, little is known about the 
read-out of this sensory memory buffer.

Finally, memory fidelity changes during encoding while the evidence is extracted from the visible 
stimulus. Previous studies revealed that longer stimulus exposures have a favorable effect on the 
subsequent recall, but that this effect is modulated by the number of simultaneously encoded objects 
(Bays et  al., 2011; Shibuya and Bundesen, 1988; Vogel et  al., 2006), providing evidence for a 
processing or encoding limitation of VWM. As stimulus presentation duration increases, more infor-
mation may be extracted from the sensory signal into VWM, increasing the fidelity of the representa-
tion. Critically, with prolonged exposure, VWM fidelity approaches a stable level that depends on the 
number of encoded items, suggesting that a ceiling is imposed on evidence accumulation by a shared 
limit on VWM resources. However, a computational framework describing information accumulation 
from sensory areas into VWM is lacking, and the observed encoding limit may reflect dynamics in 
sensory areas registering visible objects as well as VWM accumulating this sensory evidence.

Here, we investigated the temporal dynamics in the fidelity of VWM from information encoding 
until its recall. To map human recall fidelity to the time domain, we conducted psychophysical experi-
ments in which we probed memory representations at different time points relative to stimulus onset 
and offset while simultaneously manipulating set size. To isolate memory dynamics due to changes 
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in the representational signal, we advanced an analogue reproduction task with a novel response 
method specifically adapted to minimize the time cost of motor (i.e. response) processes and capture 
the momentary state of memory representations. This allowed us to precisely measure the time course 
of fidelity dynamics during representation formation (i.e. encoding) and retention (i.e. maintenance). A 
major conclusion is that the enhanced precision seen at very brief retention intervals depends on inte-
gration of information from the sensory store into VWM following the cue, with the result that retrieval 
from IM of even the simplest stimulus is subject to the temporal and capacity limitations of WM.

To explain the neural computations underlying the observed time courses, we devised a compre-
hensive neural model of memory dynamics whose core architecture is rooted in the Neural Resource 
model of VWM (Bays, 2014; Schneegans et  al., 2020). The Dynamic Neural Resource (DyNR) 
model assumes that changes in memory fidelity reflect temporal dynamics in the sensory popula-
tion registering the stimuli and from signal and noise accumulation processes of resource-limited 
VWM (Figure 1). In particular, the model prescribes how time-dependent gain control mechanisms in 
sensory areas produce a smooth neural response following abrupt changes in stimulus presence. As 
this sensory signal provides feedforward input to VWM, the dynamics in VWM activity in the temporal 
vicinity of stimulus presentation (i.e. onset and offset) strongly reflect not only limits in VWM, but also 
the dynamics of the sensory signal. Finally, once accumulated into VWM, the neural signal is subject 
to perturbations due to noise accumulation, resulting in degradation of internal representations with 
time. The DyNR model accurately reproduced the detailed empirical patterns of human recall errors 
in the psychophysical experiments. Based on these results, we argue that changes in memory fidelity 
on short time scales reflect dynamics in the gain or signal strength in neural populations representing 

Figure 1. Proposed neural population dynamics for encoding a single orientation into visual working memory 
(VWM) and maintaining it over a delay. Top: Stimulus onset is followed by a ramping increase in activity (indicated 
by color) of sensory neurons whose tuning (indicated on y axis) matches the stimulus orientation. Following 
stimulus offset, this sensory signal rapidly decays. The sensory signal, including its decaying post-stimulus 
component, provides input into VWM. Bottom: At stimulus onset, the VWM population begins to accumulate 
activity from the sensory population. This accumulation saturates at a maximum amplitude determined by global 
normalization. As the sensory activity decays, the activity in the VWM population is maintained at a constant 
amplitude, but accumulation of random errors causes the activity bump to diffuse along the feature dimension 
(y axis) over time, changing the orientation represented by the population. At recall, when the VWM population 
activity is decoded, accuracy of the recall estimate depends on both the orientation represented (center of the 
activity bump) and the fidelity with which it can be retrieved (determined by activity amplitude).

https://doi.org/10.7554/eLife.91034
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the stimulus, while changes on longer time scales are dominated by corruption of the representation 
by accumulated noise.

Dynamic Neural Resource (DyNR) model
The DyNR model generalizes an established neural population account of VWM, originally proposed 
by Bays (2014), and inspired by similar models of attention and perceptual decision-making (Jazayeri 
and Movshon, 2006; Ohshiro et  al., 2011; Reynolds and Heeger, 2009). In the original model, 
memorization and recall of visual stimuli is achieved by encoding and decoding of spiking activity 
in idealized feature-tuned neurons. The limited capacity of VWM to hold multiple object features 
simultaneously is reproduced by a global divisive normalization that constrains total spiking activity, 
implementing a continuous memory resource (Carandini and Heeger, 2011; Bays, 2014). The DyNR 
model (illustrated in Figure  1) extends this stationary encoding-decoding model with a temporal 
dimension. First, to capture encoding dynamics, stimulus information enters the VWM population 
(Figure 1, bottom) indirectly, by accumulation of neural signal from a separate sensory population 
(top), which receives the visual input. The signal strength in the VWM population at any point in time 
jointly depends on the history of the signal in the sensory population and the number of features 
competing for representation in VWM. Once the sensory signal is gone, the VWM signal is maintained 
at its maximum attained amplitude, but the stimulus value encoded by the signal gradually diffuses 
due to accumulation of random noise. Recall error depends on both the stimulus value represented at 
the time of retrieval (what is encoded) and the signal amplitude at that time, read out in the form of 
spikes (how precisely it can be decoded).

Dynamics of sensory signal strength
To model the temporal dynamics of human memory fidelity, we begin by defining computations of 
the sensory system registering the incoming signal. A particularly important computation is temporal 
filtering – a property of neurons to respond more sensitively to specific temporal patterns in stimuli. 
To model the signal represented in the cortical sensory level, we assume that the sensory response 
to a stimulus presentation of fixed duration (described as a step function in visual input amplitude, 
Figure 2A and B, left) is controlled by a monophasic temporal filter having a low-pass frequency 
response (Hess and Snowden, 1992). This choice is a natural one since it is consistent with electro-
physiological studies demonstrating that a large range of temporal frequencies registered by the 
retina and LGN (Derrington and Lennie, 1984; Lee et al., 1989) is attenuated at higher frequencies 
before the signal enters the primary visual cortex (Hawken et al., 1996). Passing the stimulus through 
such a temporal filter attenuates the neural response to fast transients in the signal, and thereby 
produces a smooth rise and decay of neural activity in response to a uniform input signal (Figure 2C). 
In particular, we assume that the activity of the sensory population after stimuli onset and offset 
changes exponentially toward the maximum sensory activity and baseline activity, respectively. The 
choice of the filter’s temporal response characteristics (i.e. its time constant) fully defines dynamics in 
the sensory population activity and controls the signal projected toward higher areas. The available 
physiological evidence suggests the temporal properties of the rising and decaying neural response 
are not symmetric (Müller et al., 2001; Oram and Perrett, 1992; Ringach et al., 2003). In partic-
ular, the neural response typically reaches the maximum activity after the onset faster than it reaches 
the baseline activity after the offset. Consistent with this, we allowed the sensory signal to decay at 
a different rate than the rising rate. The temporal dynamics in sensory population firing activity in 
response to a fixed input signal of duration toffset is then given by:

	﻿‍

γ̇s(t) =




(γ̌s − γs(t))/τrise for t ≤ toffset

−γs(t)/τdecay for t > toffset ‍�
(1)

where ‍̌γs‍ is the maximum sensory signal, ‍τrise‍ and ‍τdecay‍ are rising and decaying time constants of the 
temporal filter, respectively.

The temporal properties of the sensory response have been shown to depend on the physical 
characteristics of stimuli, such as contrast and location (Müller et al., 2001; Sit et al., 2009). Similarly, 
previous work has demonstrated that the decaying component of the sensory response is strongly 
influenced by the engagement of the sensory population after stimuli offset (e.g. Rolls and Tovee, 

https://doi.org/10.7554/eLife.91034
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Figure 2. Schematic of signal amplitudes in the dynamic neural resource (DyNR) model during a cued recall trial. (A) Observers are presented with a 
memory array (left), followed after a blank delay (not shown) by an arrow cue (center) indicating the location of one item (the target) whose remembered 
orientation should immediately be reported (right). (B) The amplitude of the visual input associated with each item is modeled as a step function (left). 
The sensory response (D) is modeled as a low-pass filtering of the stimulus input, with different time constants for rise and decay (C). (F) Amplitude of 
the working memory signal reflects a saturating accumulation of activity from the sensory population (illustrated in E). Beginning with stimulus onset, 
activity associated with each item is accumulated from the sensory population into the visual working memory (VWM) population, approaching an upper 
bound (green dashed line) that reflects a total activity limit shared between the ‍N ‍ items in memory. Once the cue has been presented (solid orange line) 
and processed (dashed orange line), uncued items can be dropped from VWM, raising the ceiling on activity available to represent the cued item (green 
arrow). This allows more information about the cued item to be accumulated from the decaying sensory trace (equivalent to the red shaded area in D). 
Response variability depends on the asymptotic VWM signal amplitude available for decoding (red circle) combined with the accumulated effects of 
diffusion (see text).
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1994). In particular, a new input signal, e.g., a backward noise mask, curtails ongoing activity related to 
the previous stimulus, resulting in a faster decay of activity compared to the unmasked post-stimulus 
period (Kovács et al., 1995). Consistent with this, here we assume that the backward mask operates 
by interrupting ongoing sensory processing of stimuli, limiting the access to the sensory signal (Figure 
5) (cf. integration mask) (Turvey, 1973).

Dynamics of VWM signal strength
The information registered by the sensory system is subsequently accumulated into a VWM popula-
tion capable of maintaining activity in the absence of further input (e.g. by self-excitation, see Aksay 
et al., 2001; Wimmer et al., 2014; Compte et al., 2000; although only the resulting dynamics are 
modeled here). The total activity of the VWM neural population is normalized, implementing a limited 
resource shared out between memory items (Bays, 2014; Schneegans et al., 2020). Consequently, 
if the stimuli are presented for long enough, the evidence accumulated from the sensory signal into 
VWM will saturate at a level that reflects the total number of stimuli represented (Figure 2D). The 
dynamics in VWM population activity are given by:

	﻿‍ γ̇wm(t) = γs(t)(γ̌wm/M(t) − γwm(t))/τwm‍� (2)

where ‍̌γwm‍ is the maximum VWM signal amplitude, M(t) is the number of items represented in VWM 
at time ‍t‍, ‍τwm‍ is the time constant of accumulation into VWM.

A common assumption of VWM models is that the strength of the representational signal remains 
stable after encoding from a visible stimulus. This stationary view has been reinforced by typically 
measuring VWM sufficiently long after the stimulus disappears (~1 s) and at a single time point. In 
contrast, work on IM demonstrated that recall fidelity in a brief period after stimulus offset typically 
surpasses and then precipitously decays toward VWM fidelity level (Coltheart, 1980). Consistent with 
that, we consider how the normalized representational signal in VWM formed during encoding can 
be boosted in the absence of the physical stimulus. In particular, we assume a representation stored 
in VWM can be strengthened as long as the sensory population provides feedforward input and VWM 
activity is not saturated at the normalized level. Such a scenario can be achieved by cueing an item for 
recall in the temporal vicinity of stimulus offset, i.e., before sensory activity decays to zero. By cueing 
an item for recall, the remaining contents of VWM becomes obsolete and can be removed from 
memory (Oberauer, 2018). In the model,

	﻿‍

M(t) =




N for t ≤ tcue∗

1 for t > tcue∗ ‍�
(3)

where ‍tcue∗‍ is the time when the item is identified for a recall and the read-out of stimulus value begins. 
This ‘demounting’ of resource from uncued items makes it available for storing additional informa-
tion about the cued item, which is extracted from the residual sensory representation, increasing the 
representation fidelity beyond that granted by equal distribution of neural signal between items. 
Critically, as sensory information quickly decays, there will be less signal remaining to supplement the 
VWM representation of a cued item if the cue is delivered later, and at the longest cue intervals the 
cue will confer no advantage over the fidelity attained when all items compete equally for VWM repre-
sentation (Figure 2D). We note that removal of uncued items cannot occur until the cue has been 
processed to the point of identifying 1 of the ‍N ‍ items in the memory array. We follow Hick, 1952, in 
modeling this cue processing time as logarithmic in the number of alternatives:

	﻿‍ tcue∗ = tcue + b log2(N)‍� (4)

where b is a scaling parameter. Previous work demonstrated that estimation of temporal dynamics 
in attention and memory could be confounded with the time needed to interpret the cue and start 
acting on it (Shih and Sperling, 2002). This is especially significant when trying to accurately capture 
quickly changing processes, such as decay of the sensory residual. Although the cue processing time 
likely fluctuates on a trial-by-trial basis due to changes in, e.g., attention, arousal, or motivation, here 
we focus on the influence of set size arising from a limited information processing capacity.

https://doi.org/10.7554/eLife.91034
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Diffusion of VWM encoded values
So far we have described only changes in the strength of the neural signal encoding features in 
memory. However, feature representations maintained over time in neural activity will accumulate 
noise in the absence of external input. We model this process of noise-driven diffusion as Brownian 
motion in feature space throughout the retention interval (Figure 1), contributing to variability in the 
decoded feature value (Burak and Fiete, 2012; Schneegans and Bays, 2018). The resulting variability 
is described by a wrapped normal distribution with variance ‍σ2‍ that increases linearly with time from 
stimulus offset, so that at time ‍t‍ the encoded feature corresponding to a true stimulus feature ‍θ‍ is:

	﻿‍ θ(t) ∼ WN (θ,σ2(t))‍� (5)

	﻿‍ σ2(t) = (t − toffset)σ̇
2
diff ‍� (6)

where ‍̇σ
2
diff ‍ specifies the base diffusion rate. While the fast decay of sensory activity after stimuli 

offset accounts for early dynamics in VWM fidelity, diffusion becomes prominent over longer delays, 
accounting for more gradual deterioration of precision with time.

Such a diffusion account has support in the available neural evidence as well as in theoretical work. 
At the neural level, an electrophysiological study in monkeys performing a spatial WM task demon-
strated that shifts of neural tuning curves during a memory delay predicted behavioral response errors 
(Wimmer et  al., 2014). A similar finding was observed in humans where drift in the fMRI activity 
patterns relative to the target predicted errors in an orientation discrimination task (Lim et al., 2019). 
At a theoretical level, continuous attractor models explain diffusion as a consequence of neural vari-
ability in networks where excitatory and inhibitory connections constrain population activity to a sub-
space or manifold corresponding to the encoded feature space (Burak and Fiete, 2012; Bouchacourt 
and Buschman, 2019; Compte et al., 2000).

Retrieval
To model the process that leads to a response we first consider that in some trials observers may erro-
neously identify a non-target item as being cued. Previous work indicates these ‘swap’ errors occur 
due to uncertainty in memory for the cue features of the stimuli, in this case their locations (Schnee-
gans and Bays, 2017; McMaster et  al., 2022). We assume that changes in variability in the cue 
features mirror those of the memory features, leading swap frequency to decrease exponentially as a 
function of presentation duration and increase linearly with retention interval (Appendix 2—figure 1):

	﻿‍
pswap = (N − 1)

[(
1
N

− rspatialtcue∗

)
e

−toffset
τspatial + rspatialtcue∗

]

‍�
(7)

where ‍τspatial‍ is the time constant related to presentation duration, and ‍rspatial‍ is the rate constant 
related to the retention interval.

If ‍θ‍ is the true feature value of the item identified as the target (i.e. the cued item with probability 

‍1 − pswap‍, a randomly selected non-cued item with probability ‍pswap‍), then due to diffusion (Equation 
5) the value encoded in the VWM population at the time of retrieval is given by:

	﻿‍ θ∗ ∼ WN (θ,σ2(tcue∗ ))‍� (8)

We model retrieval as estimation of ‍θ∗‍ based on spiking activity in the VWM population that 
encodes the selected item. For this purpose we assume an idealized set of tuning functions, where 
the mean response of neuron i encoding orientation ‍θ‍ with population gain ‍γ‍ is described by:

	﻿‍
fi(θ, γ) = γ

n
exp(κ(cos(θ − φi) − 1))

‍� (9)

where ‍n‍ is the number of neurons, and ‍κ‍ determines the tuning width. The preferred orienta-
tions of the neurons, ‍φi‍, are evenly distributed throughout the circular space to provide uniform 
coverage. The spike count produced by each neuron is drawn from a Poisson distribution, 

	﻿‍ ri ∼ Poisson(fi(θ∗, γwm∗ ))‍� (10)

https://doi.org/10.7554/eLife.91034
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and the decoded orientation estimate is obtained by ML estimation based on the spike counts:

	﻿‍
θ̂ = arg max

θ
p(r|θ).

‍� (11)

Additional assumptions
To fit the model to behavioral data, we make several further simplifying assumptions. We assume 
that the exponential decay of the sensory signal is rapid enough that there is effectively no informa-
tion remaining by the time the VWM population is decoded to generate a response. This allows us 
to approximate the VWM activity at the time of decoding by the asymptotic VWM activity were the 
sensory decay to continue indefinitely:

	﻿‍ γwm∗ ≈ γwm(∞)‍� (12)

Next, we identify diffusion in the encoded value at the time of retrieval with diffusion at the time of 
target item identification, justifying the use of ‍tcue∗‍ in Equation 8. We reason that the rate of diffusion 

Table 1. Dynamic neural resource (DyNR) model parameters (1–9) and other variables (10–24) used 
in model description.

No. Parameter/variable Description

1 ‍̌γwm‍ Maximum VWM signal amplitude

2 ‍κ‍ Tuning curve width

3 ‍τrise‍ Rise constant of the sensory temporal filter

4 ‍τdecay‍ Decay constant of the sensory temporal filter

5 ‍τwm‍ Time constant of accumulation into VWM

6 ‍̇σ
2
diff ‍ Base diffusion rate

7 ‍τspatial‍ Time constant for spatial encoding

8 ‍rspatial‍ Rate constant for spatial diffusion

9 ‍b‍ Scaling parameter for Hick’s law

10 ‍t ‍ Time, relative to stimulus onset (‍t = 0)‍

11 ‍toffset‍ Time of stimulus offset

12 ‍tcue‍ Time of cue onset

13 ‍tcue∗‍ Time an item is identified for report

14 ‍N ‍ Number of items in stimulus array

15 ‍M(t)‍ Number of items in memory at time ‍t ‍

16 ‍̌γs‍ Maximum sensory signal amplitude

17 ‍γs(t)‍ Sensory signal amplitude at time ‍t ‍

18 ‍γwm(t)‍ VWM signal amplitude at time ‍t ‍

19 ‍γwm∗‍ VWM signal amplitude at the time of decoding

20 ‍σ
2(t)‍ Accumulated diffusion at time ‍t ‍

21 ‍n‍ Number of neurons

22 ‍θ‍ True stimulus feature value

23 ‍θ∗‍ Encoded stimulus feature value at the time of decoding

24 ‍̂θ‍ Decoded stimulus feature value

https://doi.org/10.7554/eLife.91034
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is slow enough relative to the rate of sensory decay, that any additional diffusion in the brief period of 
post-cue sensory accumulation is negligible.

In Experiment 1 (see below), a task with a fixed 200 ms exposure period, we assume that the initial 
encoding of all items into VWM is complete by the time of stimulus offset, i.e., that VWM activity at 
this time can be approximated by its asymptotic level reflecting normalization:

	﻿‍ γwm(toffset) ≈ γ̌wm/N ‍� (13)

Finally, in the condition of Experiment 1 where memory array and cue are presented simultane-
ously, we assume that only the cued feature is encoded in VWM, reaching the maximum amplitude, 

‍̌γwm‍, irrespective of set size. Maximum likelihood (ML) fits were obtained via the Nelder-Mead simplex 
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method (function fminsearch in Matlab). All parameters and variables used to describe the DyNR 
model are listed in Table 1.

Overview of experiments
We tested predictions of the DyNR model against empirical data collected in continuous report tasks. 
In Experiment 1 (Figure 3A and B), observers were presented with an array of oriented stimuli for a 
fixed duration followed after a variable delay by a visual cue identifying one of the preceding stimuli 
whose orientation should be reported. This experiment was designed to investigate the contribution 
of decaying sensory representations following stimulus offset to the dynamics of recall fidelity. Exper-
iment 2 (Figure 3C) was aimed at expanding the results of the first experiment to now also assess 
the accumulation of information during the time the stimuli were visible. In this case, the exposure 
duration was varied while the delay before the visual cue was held constant. In both experiments we 
varied the number of stimuli in the array (set size) to assess capacity limitations affecting encoding 
and maintenance.

To provide additional validation of the DyNR model, we also tested its predictions against data 
from a previously published continuous report experiment (Experiment 1 in Bays, 2014) and one 
additional dataset collected as part of a separate study (Tomić et al., 2024). A detailed description of 
all experiments is provided in the Methods section.

Results
Experiment 1: Delay duration
In Experiment 1, we evaluated the time course of VWM fidelity over brief memory intervals. Previous 
work has demonstrated that immediately after a stimulus physically disappears, its representation 
briefly persists in the sensory system in the form of residual neural activity (Teeuwen et al., 2021). 
Accumulation of this lingering sensory activity into VWM could enable superior recall of information 
(Coltheart, 1980) within the constraints of a finite VWM resource that strongly limits representational 
fidelity (Ma et al., 2014). To describe these dynamics, we examined human recall of orientation stimuli 
presented in arrays of varying sizes and probed after a variable delay ranging from 0 ms to 1000 ms. 
Here, we focus on an experimental condition in which retinal afterimages were suppressed by a phase 
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shift toward the end of stimuli presentation. Validation of this method and results from the condition 
without a phase shift are provided in Appendix 1.

Experimental data
Recall error distributions and mean performance in Experiment 1 are plotted in Figure 4A and B. 
Response error (measured as RMSE) increased with both set size and delay duration. A repeated 
measures ANOVA revealed a significant effect of set size (‍F(2,18) = 117.8, p < 0.001, η2 = 0.44‍), delay 
time (‍F(5,45) = 52, p < 0.001, η2 = 0.23‍), and their interaction (‍F(10,90) = 26.7, p < 0.001, η2 = 0.13‍) on 
response error. We further explored this interaction, first finding response error in the 1 item condition 
(red in Figure 4) did not change with delay (‍F(5,45) = 1.32, p = 0.27, η2 = 0.07‍). This was supported by 
Bayesian analysis (‍BF10 = 0.34‍) which found weak to moderate evidence against modulation of 1 item 
recall by memory delay. In contrast, response error increased with delay for the remaining two set sizes 
(4 items, green; 10 items, blue; main effect: ‍F(5,45) = 55, p < 0.001, η2 = 0.48‍). This increase in response 
error consisted of an initial rapid rise (over the first 200 ms), followed by a more gradual increase as 
the delay between stimulus and cue increased. Next, we found a modulating effect of delay on recall 
for the remaining two set sizes (interaction: ‍F(5,45) = 10.1, p < 0.001, η2 = 0.05‍). The direct comparison 
revealed that the increase in response error with delay (‍∆RMSE = RMSE1000ms − RMSE Simult‍) was 
greater when observers memorized more items (‍t(9) = 9.1, p < 0.001, d = 2.88‍).

One surprising result was the observed set size effect in the 0 ms delay condition 
(‍F(2,18) = 23.7, p < .001, η2 = .53‍) consistent with a stepwise increase in recall error with set size (pair-
wise comparison, ‍t(9) ≥ 2.88, p ≤ .036, d ≥ 0.91‍, Bonferroni correction applied). Importantly, this effect 
was a consequence of responding based on a memory of the stimulus, since orientation repro-
duction was comparable across set sizes in the perceptual condition (simultaneous presentation; 

‍F(2,18) = 1.26, p = .3, η2 = .04, BF10 = 0.47‍). Previous studies have characterized IM as an effectively 
unlimited store, capable of holding any number of items without a consequent loss of fidelity (Doost 
and Turvey, 1971; Sperling, 1960). While our modeling ultimately affirmed this conception of IM, we 
nonetheless show that recall of information is contingent on the number of objects concurrently in 
memory from the moment stimuli physically disappear (see below).

Taken together, these results provide evidence that the fidelity of stored representations changes 
dramatically over the first few moments after stimuli offset. We next aimed to explain the neural 
computations supporting these dynamics. In summary, behavioral data displayed three key character-
istics we aimed to explain, all visible in Figure 4B. First, recall fidelity for a single item remained rela-
tively stable across changes in delay, and was the same as perceptual fidelity. Second, recall fidelity for 
higher set sizes showed substantial, nonlinear temporal dynamics. Lastly, recall fidelity was contingent 
on the number of stored items from the moment stimuli disappeared.

DyNR model
Curves in Figure 4A and B show fits of the model with ML parameters (mean ± SE: population gain  ‍γ‍ 
= 59.8 ± 3.3, tuning width  ‍κ‍ = 3.21 ± 0.2, sensory decay time constant  ‍τdecay‍ = 0.21 ± 0.052, VWM 
accumulation time constant  ‍τWM‍ = 0.096 ± 0.045, cue processing constant  ‍b‍ = 0.171 s ± 0.055 s, base 
diffusion  ‍σ

2
diff ‍ = 0.03 ± 0.017, swap probability  ‍p‍ = 0.027 ± 0.009). The model provided a close fit to 

response error distributions (Figure 4A) and summary statistics (Figure 4B; see also Appendix 2—
figure 1 for reproduction of swap error frequencies), successfully reproducing the pattern of changes 
with set size and delay. In particular, the model accounted for the three key observations identified 
above.

First, the model predicted the near-constant recall fidelity observed for a single item across these 
short retention intervals. The neural signal associated with the target object at recall depends on 
the normalized signal in VWM at offset supplemented by the available sensory signal post-cue. The 
sensory signal is integrated into VWM after the cue to fill any unallocated neural resource that arose 
by discarding uncued items. In the case of a single item, the entirety of VWM resources are allocated 
to one object during encoding, so no resource is freed by the cue that would allow the signal to be 
further strengthened based on the decaying sensory representation.

Importantly, this prediction contradicts the classical view of direct read-out from IM, according to 
which representational fidelity should be enhanced with very short delays irrespective of VWM limita-
tions (see Alternative accounts below for a formal test of such a model). Note that the DyNR model 
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nonetheless predicts some deterioration in fidelity over time even for a single item, due to noise-
driven diffusion of the stored value. However, based on previous reports, we expected this process 
to be substantially slower and the impact on single-item precision relatively small on this (≤1 s) time 
scale. The fitted diffusion parameters and resulting shallow slope of fitted RMS error (red curve in 
Figure 4B) confirmed this.

Second, the neural model predicts the specific pattern of dynamics observed in trials with multiple 
items (set sizes 4, green, and 10, blue curves). Once the cue is presented, resources encoding uncued 
items are freed and the decaying sensory signal representing the target item is further integrated into 
VWM, still subject to limited total VWM resources but now without competition from other items. 
Due to exponential decay of the sensory signal, the increase in fidelity thus accrued changes rapidly 
with retention interval over the first few hundred milliseconds. At longer delays, the cue identifies 
the target only after the sensory signal has effectively disappeared, so the VWM signal representing 
the target item remains at the normalized level reflecting equal distribution between all items in the 
memory array, and memory dynamics consist only of the more gradual deterioration of fidelity due to 
accumulated noise in the encoded value.

Finally, the DyNR model predicts the presence of a set size effect on fidelity throughout the entire 
memory period, including the no delay (0 ms) condition in which the cue onset was coincident with 
stimulus offset, but not in the simultaneous cue condition. In the model, this behavior emerges as a 
consequence of two independent processes. First, at the end of stimulus presentation, items within 
smaller (lower set size) arrays are encoded in VWM with higher signal amplitude, reflecting normal-
ization. This signal strength represents a baseline that can be supplemented by further integration of 
the sensory signal after an early cue. However, if the sensory decay is sufficiently rapid, then even if 
the cue is presented immediately the target representation will not attain the maximum amplitude 
(equivalent to set size of 1) starting from a lower baseline. Second, as described by Hick’s law (Hick, 
1952), it takes longer to identify the target item based on the cue as the number of alternatives 
increases (see Alternative models below for a formal test of this assumption). As a result, for higher 
set sizes, less sensory signal encoding the target item remains to be integrated into VWM once it has 
been identified.

Model variants
We next focused on alternative explanations for the temporal dynamics observed in Experiment 1. 
Specifically, we examined whether the observed dynamics could be accounted for either solely by 
post-stimulus changes in neural signal amplitude or solely by noise-driven diffusion of stored values. 
To pre-empt our conclusions, we demonstrate that both components are needed to explain the 
observed dynamics in memory fidelity. Moreover, to more closely examine the role of diffusion in WM 
dynamics, we fit our neural model to an additional dataset collected in our lab (Tomić et al., 2024; 
see Appendix 4 for full details). This experiment used longer delays compared to those used in Exper-
iment 1, and therefore precluded any beneficial effect of post-stimulus sensory information, while at 
the same time allowing the diffusion to operate over a longer period. This experiment allowed us to 
test whether diffusion is sufficient to account for human recall errors with longer memory delays.

Fixed neural signal
A recent computational study on forgetting in VWM proposed that diffusion is sufficient to explain 
memory dynamics over delay (Panichello et al., 2019). To test for this, we developed two reduced 
versions of the DyNR model in which the diffusion process was solely responsible for memory fidelity 
dynamics. In both variants, the sensory signal terminated abruptly with stimuli offset, so the VWM 
signal encoding the stimuli was independent of the delay duration and equal to the limit imposed by 
normalization (‍̌γwm/N ‍). In the first variant, the diffusion rate was constant across set sizes, as in the full 
model. The formal model comparison demonstrated that the full DyNR model performed better than 
this simplified alternative (ΔAIC = 609.5).

In the second variant, we allowed the diffusion rate to increase proportionally with set size (for 
a similar proposal, see Koyluoglu et  al., 2017). This model was again outperformed by the full 
DyNR model (ΔAIC = 666.4). Critically, both models tested here failed to qualitatively reproduce the 
observed nonlinear pattern of changes in recall error with time, notably overestimating recall error at 
the shortest delays by assuming no modulation in the representational signal (Appendix 3—figure 1).
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Diffusion
We developed two variants of the proposed neural model to test the role of diffusion. In the first 
variant, we completely omitted the diffusion process from the model to test whether the sensory signal 
modulation during the retention period is sufficient to explain temporal dynamics in recall fidelity. It 
could be argued that diffusion accounts for only minor changes in precision over brief delays as used 
here and, therefore, adds unnecessary complexity to the proposed model without improving the fit 
substantially. However, the formal model comparison revealed that the full DyNR model provides a 
better fit to human recall error compared to the matching model without diffusion (ΔAIC = 17.9).

The second variant was identical to the proposed model, except that we replaced the constant 
diffusion rate with a set-size-scaled diffusion rate by multiplying the right side of Equation 6 by ‍N ‍. 
The model comparison showed that the full DyNR model also outperformed this variant (ΔAIC = 29.8). 
While both model variants qualitatively reproduced the increase in memory error with delay and set 
size, the pattern of variability was better explained by the model with a constant diffusion rate across 
set sizes. Although a more substantial diffusion effect could become apparent with longer delays than 
those used here, previous work demonstrated that noise-driven diffusion causes representations to 
deteriorate throughout the entire retention period (Bouchacourt and Buschman, 2019).

Finally, we examined the role of diffusion with longer memory intervals in a separate experiment 
using variable set sizes and memory intervals (1 s and 7 s) (for full details, see Additional dataset 1 
in Appendix 4). We demonstrated that, once sensory information decayed completely, an accumula-
tion of error during retention interval accounted for continuing memory deterioration. Together, the 
results presented here corroborate findings on the role of diffusion in temporal dynamics of recall 
fidelity (Schneegans and Bays, 2018).
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Experiment 2: Exposure duration
In Experiment 2, we evaluated the encoding phase of VWM, by testing recall of orientation stimuli 
displayed in arrays of variable size presented for variable durations. In the DyNR model, increasing the 
sensory evidence by prolonging stimulus presentation has a favorable effect on later recall of stimulus, 
as more of that evidence can be accumulated into VWM. Importantly, this accumulation is also capped 
by the VWM resources available to store it (Figure 5).

Experimental data
Figure  6 shows the response error for different presentation durations and set sizes. Consis-
tent with previous findings, response error can be seen to decrease with prolonged presenta-
tion duration, but increase as the number of items in memory increases. This was confirmed 
with a significant effect of display duration (‍F(6,72) = 29.01, p < 0.001, η2 = 0.21‍), set size 
(‍F(2,24) = 112.51, p < 0.001, η2 = 0.54‍), and their interaction (‍F(12,144) = 2.58, p = 0.004, η2 = 0.019‍). 
We further explored this interaction by first confirming that response error decreased with display 
duration within each set size (‍F(6,72) ≥ 10.24, p < 0.001, η2 ≥ 0.26‍). A consistent pattern was observed 
across set sizes, comprising an initial rapid decrease in response error over the briefest presentation 
times (first 200 ms), followed by saturation at prolonged exposure durations. Next, we calculated 
the change in recall error between the longest and the shortest display exposure within each set 
size, revealing that response error decreased more rapidly with display time as the number of items 
in memory decreased (ANOVA: ‍F(2,24) = 7.79, p = 0.002, η2 = 0.21‍; corrected pairwise comparisons: 

‍t1−4 = 3.65, p = 0.016, d = 0.87‍, ‍t4−10 = 0.96, p = 0.72, d = 0.27‍).
These results reveal the time course of information accumulation into VWM and forming of stable 

representations. We again identified several key characteristics of the dynamics of recall fidelity in the 
data (Figure 6B) to test against the DyNR model. Consistent with previous studies, we found recall 
fidelity changed with both presentation duration and the number of presented stimuli (Bays et al., 
2011; Shibuya and Bundesen, 1988; Vogel et al., 2006). Specifically, as display duration increased 
from the shortest exposure, recall error showed an initial rapid decrease followed by a gradual level-
ing-off. As set size increased, the initial slope became shallower and the plateau occurred at a higher 
level of error.

DyNR model
Curves in Figure 6A and B shows fits of the model with ML parameters (mean ± SE: population gain  ‍γ‍ 
= 188.5 ± 109.6, tuning width  ‍κ‍ = 10.2 ± 6.08, sensory rise time constant  ‍τrise‍ = 0.33 ± 0.18, sensory 
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decay time constant  ‍τdecay‍ = 0.61 ± 0.19, VWM accumulation time constant  ‍τWM‍ = 0.8 ± 0.34, cue 
processing constant  ‍b‍ = 0.2 s ± 0.09 s, base diffusion  ‍σ

2
diff ‍ = 0.28 ± 0.08, spatial uncertainty time 

constant  ‍τspatial‍ = 0.013 ± 0.004, swap probability p = 0.053 ± 0.01). The model provided an excellent 
quantitative fit to response distributions (Figure 6A) and RMSE (Figure 6B), successfully reproducing 
the pattern of changes with set size and presentation duration.

The model predicted that information from a visible stimulus accrues at a high rate immediately 
after the stimulus onset, consistent with observed changes in human recall error over stimulus dura-
tions up to 200 ms (Figure 6). This initial high encoding rate emerges naturally in the model due to the 
joint dynamics of sensory and VWM populations. In the sensory population, a low-pass temporal filter 
serves as a neural gain control mechanism, attenuating neural response to transient changes in stimuli 
(Hess and Snowden, 1992; Hawken et al., 1996). As a consequence, the neural response to stim-
ulus onset increases exponentially (Figure 5). The information from sensory areas is accumulated into 
VWM, such that the accumulation rate is directly proportional to the difference between the current 
and saturating state (i.e. the rate is faster when accumulated information is far from the saturating 
state). Therefore, dynamics in the sensory and VWM population jointly account for the initial high rate 
of information extraction from stimuli, and its dependence on set size.

After the initial steep change, the model predicts that recall fidelity will asymptote. This was 
again observed in human behavior (Figure 6). Extending stimulus presentation beyond 200 ms had 
negligible impact on recall precision, consistent with previous studies (Bays et al., 2011). The model 
explains this behavior by describing how sensory signal and VWM accumulation independently satu-
rate with time (Figure 5). Since the temporal filtering in the sensory population attenuates only high-
frequency stimuli (i.e. very short presentations), with sufficient exposure, the sensory signal plateaus, 
resulting in a stable feedforward input to VWM. Similarly, VWM signal strength is subject to limits 
determined by normalization. Once the accumulated information reaches the normalized maximum 
set by the number of objects in memory, further accumulation of sensory evidence is not possible. 
Following the cue, a portion of the resource is freed, allowing the target representation to be further 
strengthened. However, because the sensory signal plateaus at longer exposures, the information 
available for integration after the cue remains constant across the longer exposures, supplementing 
normalized VWM signal by the same amount. The result is a plateau in fidelity that varies with set 
size.

Model variants
We investigated whether post-stimulus sensory persistence contributed to the model fits in Experi-
ment 2. We assumed that the signal persisting after stimulus offset would be impaired but not elim-
inated by the subsequent presentation of a noise mask in this experiment (Kovács et al., 1995). An 
alternative account suggests that the mask immediately terminates any stimulus-related signal. To test 
for this, we fit a variant of the DyNR model in which the sensory signal was terminated by the onset 
of the mask, providing a feedforward signal to VWM only for the period of the stimulus presentation. 
We found that the proposed DyNR model, in which some sensory signal persists after the mask onset, 
gave a better account of the data than this model variant (ΔAIC = 446.67). Although the alternative 
model captured the general pattern of changes in memory fidelity with exposure duration, it mispre-
dicted fidelity at shorter exposures, in particular the effect of set size (Appendix 3—figure 2A).

A testable prediction of this alternative model is that the memory fidelity at recall should obey the 
neural normalization principle because there was no additional signal to supplement the presentation 
after initial encoding. To test for this, we additionally fitted each exposure condition separately using 
the original neural resource model with only three parameters (i.e. neural gain, tuning width, and 
swap probability). This model failed to predict actual fidelity levels at recall (Appendix 3—figure 2B), 
corroborating the findings of the model comparison.

Finally, to investigate the role of the post-stimulus sensory persistence on encoding dynamics, we 
fit the DyNR model to an additional dataset from Bays et al., 2011 (for full details, see Appendix 
5). This experiment aimed to investigate VWM dynamics during encoding, like our Experiment 2. 
In contrast to our Experiment 2, Bays et al., 2011, used a much longer delay interval (1100 ms vs 
100 ms), precluding the possibility of further accumulation of sensory evidence following the cue. 
We expected that the DyNR model could account for memory dynamics in this study without any 
post-stimulus sensory activity. This was confirmed by accurately reproducing memory dynamics with 
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a model in which encoding into VWM relied only on sensory evidence during stimulus presentation 
(detailed results in Appendix 5).

Alternative accounts
Having demonstrated the need for both post-stimulus sensory persistence and diffusion to account 
for empirical data, we next considered alternatives to our account of VWM accumulation and infor-
mation read-out.

Direct read-out of sensory information
In the DyNR model, recall fidelity is enhanced following the cue by integrating remaining sensory 
activity into capacity-limited VWM. As a consequence, response precision is bounded from above 
by the memory limit irrespective of the available sensory signal. An alternative possibility is that the 
decaying sensory representation can be directly read out following the cue to inform a response, 
bypassing WM limitations. To formalize this alternative model, we assumed that independent sensory 
and VWM representations would be optimally combined via summation of neural activity to yield 
population gain

	﻿‍ γ∗sum = γwm(tcue∗ ) + γs(tcue∗ )‍� (14)

The model is otherwise identical to the proposed DyNR model. A distinctive prediction of this 
model is that the precision of recall changes exponentially with delay for every set size, including 1 
item (Appendix 3—figure 3). This prediction is qualitatively inconsistent with the pattern of results 
observed in Experiment 1, in contrast with the DyNR model which does not predict any beneficial 
effect of earlier cues with set size 1. This alternative model provided a worse fit to data from Exper-
iment 1 (ΔAIC = 164) and Experiment 2 (ΔAIC = 84.6), for combined evidence favoring the DyNR 
model of ΔAIC = 248.6.

Cue processing
In the DyNR model, we assumed that identifying the target stimulus based on the cue is time-
consuming, and becomes more so as the number of alternatives increases. Cue processing time 
encompasses perceptual, attentional, and decision components needed to interpret and act on the 
cue. We tested the necessity of this component by fitting a model variant in which VWM started accu-
mulating evidence about the cued item at the moment of cue presentation. This model provided a 
worse fit to empirical data from both Experiment 1 (ΔAIC = 84.5) and Experiment 2 (ΔAIC = 107.5), 
for total evidence in favor of the DyNR model of ΔAIC = 192 (Appendix 3—figure 4). We fit another 
variant in which cue processing time was constant across set sizes. This alternative provided a worse 
fit to the data in Experiment 1 (ΔAIC = 191.6) and Experiment 2 (ΔAIC = 105), for combined evidence 
ΔAIC = 296.6 in favor of the full DyNR model that assumes cue processing time increases with set size. 
These results corroborate previous findings on the important role of cue processing time in models of 
attention (Shih and Sperling, 2002) and IM (Sperling, 2018).

Constant accumulation rate
In the DyNR model, the rate of accumulation into VWM is proportional to the difference between the 
present VWM amplitude and the maximum normalized amplitude (Equation 2). An arguably simpler 
assumption is that the neural signal approaches saturation at a constant rate (Boerlin and Denève, 
2011; Beck et al., 2008). In particular, the rate at which the signal representing an item is transferred 
to VWM is constant and depends only on the number of encoded items, i.e.,

	﻿‍

γ̇wm(t) =




γs(t)/(M(t)τwm) if γwm(t) < γ̌wm/M(t)

0 otherwise. ‍�
(15)

The dependence on ‍M(t)‍ satisfies the constraint that the neural resources in VWM are allocated at 
a constant rate, irrespective of the number of items. We applied this model to psychophysical data 
from both experiments (Appendix 3—figure 5) and found it provides a worse fit to the data from 
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Experiment 1 (ΔAIC = 11.5) and Experiment 2 (ΔAIC = 36.2), for combined evidence favoring the 
DyNR model with exponential saturation (ΔAIC = 47.7).

Discussion
In the present study, we investigated the temporal dynamics of short-term recall fidelity. We conducted 
two new human psychophysical experiments and analyzed two existing datasets in order to charac-
terize how recall errors are influenced by set size, stimulus duration, and retention interval. We devel-
oped a DyNR model to provide a mechanistic explanation of the observed behavior, capturing not 
only changes in overall fidelity but also the distribution of errors in the stimulus space and frequen-
cies of swaps (intrusion errors). A key finding is that the benefit to recall precision observed at very 
short delays is due to additional post-cue integration of sensory information into WM, and that direct 
retrieval from sensory memory is unable to account for the empirical patterns of error.

Sensory and WM dynamics during delay
In the first experiment we investigated the effects of brief unfilled delays on recall fidelity. With multi-
item arrays, we observed that memory performance deteriorates precipitously over the first few 
hundred milliseconds after stimuli disappear, followed by a gradual leveling-off of error with longer 
delays (Figure 4). These results are consistent with previously reported patterns of memory dynamics 
(Di Lollo and Dixon, 1988; Sperling, 1960; Bradley and Pearson, 2012; Neisser, 1967), and esti-
mates of sensory decay ranging between 100 ms and 400 ms (Loftus et al., 1992; Lu et al., 2005). 
Here, we shed new light on these results by taking a computational approach in explaining observed 
temporal dynamics, and asking what this superior recall’s neural origin is and its relation with VWM. 
To answer these questions, we adapted the Neural Resource model of Bays, 2014, with a temporal 
component. The new DyNR model considers dynamics in a sensory neural population registering the 
stimuli and in a VWM population that stores the stimuli for later recall. Critically, our model assumes 
that objects encoded with limited precision into VWM can be flexibly supplemented with sensory 
activity following a recall cue, within a brief temporal window while the sensory population provides 
a feedforward input post-stimulus. The boost in the representational VWM signal predicts a behav-
ioral benefit of early cues that is consistent with our data and a large corpus of previous experiments 
(Coltheart, 1980).

A common assumption in studies of visual short-term memory is that recall over brief delays is 
exclusively supported by one of two memory stores, IM or VWM (Bradley and Pearson, 2012; Pratte, 
2018). In this account, a cue presented within the first few hundred milliseconds after stimulus offset 
allows observers to access high resolution but rapidly deteriorating representations in IM; once the 
information in IM has decayed, objects must be retrieved from the capacity-limited VWM store. 
Two pieces of evidence from the current study contradict this view and strongly suggest that recall 
depends on VWM from the moment objects disappear. First, the recall benefit of short delays was not 
observed for one item arrays. We propose that this behavior reflects the fact that, during encoding, 
the entirety of the VWM resource is allocated to a single object, leaving no free capacity for further 
enhancement based on the available sensory signal post-cue. Second, we found clear evidence that 
recall fidelity varied with set size even with no delay between stimulus offset and cue (0 ms condition). 
We argue that this arises from the set size dependence of representational fidelity in VWM, which 
is only incompletely compensated by integration of the decaying sensory signal post-cue, resulting 
in lower fidelity for higher set sizes. The DyNR model provides a successful quantitative account for 
these findings, which are in clear contrast with the traditional view of IM.

The rapid changes in fidelity over short delays can be distinguished from dynamics over longer 
retention intervals. A number of recent studies have observed a slow deterioration of VWM precision 
over the course of prolonged retention (Schneegans and Bays, 2018; Pertzov et al., 2017; Rade-
maker et al., 2018; Ricker et al., 2014; Shin et al., 2017; Zhang and Luck, 2009). The causes of this 
deterioration are still contested, but growing evidence links this behavior to noise-driven diffusion. At 
a mechanistic level, diffusion is considered a fundamental property of continuous attractor networks 
of the kind commonly associated with models of WM (Brody et al., 2003; Khona and Fiete, 2022). 
In such networks, memorized features are represented as persistent activity ‘bumps’ in the network’s 
representational feature space. Over a memory delay, the activity bump is sustained by balanced 
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excitatory and inhibitory connections, while stochasticity in neural activity causes shifts of the bump 
along the feature dimension, taking the form of a random walk. Although we did not model the 
network processes governing stability and diffusion within neural populations, our implementation is 
consistent with random (Brownian) perturbation, as assumed by attractor models (see also Schnee-
gans and Bays, 2018).

Our theoretical account of memory dynamics during delay differs from several existing models 
of forgetting, which emphasize diffusion as the dominant source of error in short-term memory (e.g. 
Panichello et al., 2019; Koyluoglu et al., 2017). To solely account for the observed data in Exper-
iment 1, diffusion would need to be strongest early in the retention period, followed by a much 
weaker diffusion with longer delays. However, it is unclear why the diffusion rate would change, and 
particularly slow down, with time. Assuming a constant neural signal encoding the stimulus, this 
would predict greater variability in neural activity initially compared to the later period after stimuli 
offset. This is inconsistent with electrophysiological data showing relatively stable levels of spiking 
variability throughout the memory delay period (Khanna et al., 2019; Chang et al., 2012; Hussar 
and Pasternak, 2010). The results observed here are consistent with the proposal that modulation 
of neural signal over short memory intervals accounts for an abrupt change in response fidelity, while 
diffusion accounts for a slower change that grows with time.

In the present study, a model assuming a constant diffusion rate, independent of the stored number 
of items, was preferred to one in which diffusion rate increases linearly with set size. This is consistent 
with results of Shin et al., 2017, who did not find a significant effect of set size on the rate of memory 
deterioration. In contrast to that, Koyluoglu et al., 2017, recently proposed that the rate of diffusion 
scales with set size. However, this study did not account for the presence of swap errors, which we 
found to increase with retention interval as well as set size. To draw strong conclusions about the 
dependence of diffusion on set size would require a future study to disentangle the different sources 
of error that could, in principle, increase with delay.

Sensory and WM dynamics during encoding
Having investigated memory degradation during the retention interval, in Experiment 2 we focused 
on the dynamics arising from accumulation of information during stimulus presentation. Using new 
psychophysical data, we showed that encoding of information into VWM is contingent on both 
presentation duration and the number of memorized stimuli. The observed patterns of data indicate 
that VWM encoding of elementary stimuli is mostly completed within the first 200 ms of presentation 
even at the largest set sizes, with minimal benefit of longer exposures, extending previous work (Bays 
et al., 2011; Shibuya and Bundesen, 1988; Vogel et al., 2006). This fast encoding process may have 
an adaptive role: with a key function of VWM to store and accumulate information across saccadic 
eye movements, an efficient system should deploy its resources within the duration of a typical gaze 
fixation (Aagten-Murphy and Bays, 2018; Rolfs and Schweitzer, 2022).

Our aim was again to move beyond the description of the encoding dynamics and to provide a 
biologically plausible neurocomputational account of these dynamics. To achieve that, we applied 
the same VWM accumulation process that operates post-cue to the sensory information during stim-
ulus presentation. Using previously published and newly collected data, we show that a model in 
which VWM accumulates dynamical sensory input up to a fidelity limit can successfully account for 
patterns of human recall errors with variable set size and stimulus presentation. An important result 
of our modeling is that the accumulated information in VWM increases with a rate proportional to 
unfilled capacity. In particular, the model with such exponential accumulation provided a better fit 
than a model assuming a constant encoding rate. This parallels previous observations that models 
based on exponential-like extraction of information successfully characterize attention (Bundesen, 
1990; Sperling and Weichselgartner, 1995), WM encoding (Bays et al., 2011; Smith and Ratcliff, 
2009), memory updating (Oberauer and Kliegl, 2006), and broader cognitive processes (Usher and 
McClelland, 2001; McClelland, 1979). We hypothesize that this pattern represents an approach to an 
equilibrium state of balanced excitation from the sensory input and lateral inhibition within the VWM 
population, which is the basis for capacity of the memory system.

In Experiment 2, the longest presentation duration shows an upward trend in error at set sizes 4 
and 10. While this falls within the range of measurement error, it is also possible that this is a mean-
ingful pattern arising from visual adaptation of the sensory signal, whereby neural populations reduce 
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their activity after prolonged stimulation. This would mean less residual sensory signal would be avail-
able after the cue to supplement VWM activity, predicting a decline in fidelity at higher set sizes. Visual 
adaptation has previously been successfully accounted for by a type of delayed normalization model 
in which the sensory signal undergoes a series of linear and nonlinear transformations (Zhou et al., 
2019). Such a model could in future be incorporated into DyNR and validated against psychophysical 
and neural data.

Our computational account of VWM encoding dynamics differs from several existing modeling 
frameworks aiming to explain similar data. For example, the theory of visual attention (TVA; Bundesen, 
1990) assumes that visual stimuli participate in a parallel exponential race toward limited VWM. Like 
the DyNR model, TVA assumes a form of normalization in the sense that the speed with which items 
race toward VWM depends on the number of items in the visual field. Unlike our dynamic model, TVA 
is not a theory of VWM, and it considers VWM only as a storage for categorizations of visual objects. 
In particular, TVA takes into account the limits of VWM but does not specify why or how these limita-
tions arise. Finally, TVA considers whether an object was selected for entry into VWM in an all-or-none 
fashion; our dynamic model is mostly concerned with the fidelity of representations. A somewhat 
alternative account of VWM encoding is provided by the competitive interaction theory (CIT; Sewell 
et al., 2014), which is similarly based on the signal detection theory and principles of normalization 
(Reynolds and Heeger, 2009). Like TVA, CIT is mostly focused on item selection and merely incor-
porates a concept of VWM capacity derived from object-based models of VWM. Although CIT had 
success in accounting for behavioral data from a two-alternative orthogonal discrimination task using 
up to four items and a limited range of encoding times, it remains an open question whether this 
model can account for error distributions as measured in a continuous report task, and a larger range 
of set sizes and stimulus exposures. Importantly, compared to both TVA and CIT, the DyNR model is 
strongly rooted in and inspired by findings from neuroscience. This not only adds to the biological 
plausibility of our model but also allows future studies to test the model’s predictions using physio-
logical methods.

Neural mechanisms
The theory presented here generalizes the Neural Resource model of Bays, 2014, a simple encoding-
decoding model in which visual features are represented in the noisy spiking activity of neural popu-
lations (Pouget et al., 2000), and where the activity representing each feature scales inversely with 
the total number of representations, consistent with the prevalence of normalization mechanisms in 
the brain and observations from single-neuron recording (Buschman et al., 2011) and fMRI decoding 
(Sprague et al., 2014) studies. The population coding in the model is based on an abstract idealiza-
tion of neural response functions. Nevertheless, it has recently been shown that more realistic popu-
lation coding schemes that allow for heterogeneity in neural tuning curves and correlated spiking 
activity as observed in visual cortex maintain the key predictions of the idealized model (Taylor and 
Bays, 2020; Schneegans et al., 2020). This may be seen as a consequence of the different population 
codes inducing a common representational geometry (Kriegeskorte and Wei, 2021).

We adapted the stationary VWM model by first incorporating a sensory population that provides 
an input drive to the VWM population. In parallel with neurophysiological observations, a common 
approach is to model these dynamics with a low-pass filter which acts like a neural gain modula-
tion mechanism (Hawken et al., 1996). As a consequence, the sensory response to stimulus onset 
and offset is an exponential rise and decay in activity, respectively. The decaying component of the 
response has been recognized as a neural substrate of visual persistence and IM (van Kerkoerle 
et al., 2017; Teeuwen et al., 2021). Here, we modeled sensory decay with an exponential function 
(Zylberberg et al., 2009), although other forms of decay have been proposed. For example, Loftus 
et al., 1992, showed that iconic decay could be better captured using a gamma survival function, 
a generalization of exponential decay that could simply be implemented in our neural model by 
replacing a single filter with a cascade of exponential low-pass filters.

In addition to the dynamics in the sensory population, two features of VWM introduce additional 
dynamics in representation fidelity: the accumulation of information (discussed above) and the diffu-
sion of representations owing to accumulated noise. Although we did not aim to model the neural 
processes behind diffusion, our implementation is consistent with the consequences of neural vari-
ability in attractor networks (Burak and Fiete, 2012; Khona and Fiete, 2022). Converging neural 
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evidence demonstrating such diffusion has been observed using single-unit neural recording in 
monkeys (Wimmer et al., 2014), as well as EEG (Wolff et al., 2020) and fMRI (Lim et al., 2019; Yu 
et al., 2020) studies in humans.

As well as being implicated in higher cognitive processes including VWM (Buschman et al., 2011; 
Sprague et  al., 2014), divisive normalization has been shown to be widespread in basic sensory 
processing (Bonin et al., 2005; Busse et al., 2009; Ni and Maunsell, 2017). The DyNR model pres-
ently incorporates the former but not the latter type of normalization. While the data observed in our 
experiments do not provide evidence for normalization of sensory signals (note comparable recall 
errors across set size in the simultaneous cue condition of Experiment 1), this may be because sensory 
suppressive effects are localized and our stimuli were relatively widely separated in the visual field: 
future research could explore the consequences of sensory normalization for recall from VWM using, 
e.g., center-surround stimuli (Bloem et al., 2018).

Following onset of a stimulus, the visual signal ascends through visual areas via a cascade of 
feedforward connections. This feedforward sweep conveys sensory information that persists during 
stimulus presentation and briefly after it disappears (Lamme et al., 1998). Simultaneously, reciprocal 
feedback connections carry higher-order information back toward antecedent cortical areas (Lamme 
and Roelfsema, 2000). In our psychophysical task, feedback connections likely play a critical role in 
orienting attention toward the cued item, facilitating the extraction of persisting sensory signals, and 
potentially signaling continuous information on the available resources for VWM encoding. While 
our computational study does not address the nature of these feedforward and feedback signals, a 
challenge for future research is to describe the relative contributions of these signals in mediating 
transmission of information between sensory memory and WM (Semedo et al., 2022).

Our model makes a clear distinction between dynamics in sensory and VWM populations, however, 
it remains agnostic as to whether the populations have the same or different anatomical locus (Rade-
maker et al., 2019). Albeit inspired by the properties of orientation-selective neurons in area V1, 
population tuning of this kind is a common coding motif across the brain (Pouget et al., 2000). While 
it could be considered efficient to use already specialized circuits to maintain as well as process visual 
information, it is still debated whether sensory areas are a feasible candidate for memory storage 
(Serences, 2016; Xu, 2017). While some studies have focused on prefrontal (Goldman-Rakic, 1995), 
parietal (Bettencourt and Xu, 2016), or occipital (Harrison and Tong, 2009) cortices as the primary 
locus of VWM, others argue for distributed storage by demonstrating that VWM contents can be 
decoded from imaging signals originating in multiple brain areas (Christophel et al., 2018).

Representational dynamics of cue-dimension features
Memory retrieval failures in which a non-cued item is reported in place of the intended target repre-
sent an important source of error in VWM recall. These swap errors occur more often at higher set 
sizes and when spatial confusability is high (Bays et al., 2009; Emrich and Ferber, 2012; Rerko 
et al., 2014; Bays, 2016b), as predicted by models in which they arise from uncertainty in the recall 
of cue-dimension features leading to incorrect selection of an item in memory (Schneegans and 
Bays, 2017; McMaster et al., 2022). In the current study, we assumed memory for spatial loca-
tion (the cue feature) undergoes similar dynamics to memory for orientation (the report feature), 
and in particular that spatial information degrades with retention time (Schneegans and Bays, 
2018), leading to changes in swap error frequency with delay interval. Similarly, during encoding 
the fidelity of spatial representation increases with the accumulation of sensory evidence (Zimmer-
mann et al., 2013), reducing the uncertainty at retrieval and consequently swap errors at longer 
stimulus exposure. Although we did not explicitly model the neural signals representing location, 
the modeled dynamics in the probability of swap errors were consistent with those of the primary 
memory feature. We provided a more detailed neural account of swap errors in our earlier works 
that is theoretically compatible with the DyNR model (Schneegans and Bays, 2017; McMaster 
et al., 2022).

The DyNR model successfully captured the observed pattern of swap frequencies (intrusion errors). 
The only notable discrepancy between DyNR and the three-component mixture model (Appendix 2—
figure 1) arises with the largest set size and longest delay, although with considerable interindividual 
variability. As the variability in report dimension increases, the estimates of swap frequency become 
more variable due to the growing overlap between the probability distributions of swap and non-swap 
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responses. This may explain apparent deviations from the modeled swap frequencies with the highest 
set size and longest delay where orientation response variability was greatest.

Removal of information from WM
In the DyNR model, taking advantage of early cues requires rapid removal of the VWM signal associ-
ated with uncued items, to admit further accumulation of activity encoding the cued item. To achieve 
this, an active process of selective content elimination may be required (Oberauer, 2018), as opposed 
to a passive decay of uncued representations during the post-cue interval. Mounting evidence for 
such active removal has been provided at the behavioral (Williams et al., 2013) and neural (LaRo-
cque et al., 2013) level. Importantly, studies show that a functional role of such active removal is to 
release resources allocated to the uncued representations, facilitating the encoding of new informa-
tion (Taylor et al., 2023; Souza et al., 2014). The fast reallocation of neural resources assumed by the 
DyNR model is consistent with such a description of active removal.

Methods
Participants
A total of 23 naive observers (12 females, 11 males; aged 18–34) took part in the study after giving 
informed consent in accordance with the Declaration of Helsinki. Ten observers participated in 
Experiment 1 and 13 observers participated in Experiment 2. Volunteers were recruited through 
the Cambridge Psychology research sign-up system. All observers reported normal color vision and 
normal or corrected-to-normal visual acuity, and were remunerated £10/hr for their participation. 
Procedures were approved by the University of Cambridge Psychology Research Ethics Committee 
(approval number PRE.2015.099).

General methods
Experimental setup
Stimuli were presented on a 69 cm gamma-corrected LCD monitor with a refresh rate of 144 Hz. 
Participants were seated in a dark room and viewed the monitor at a distance of 60 cm, with their 
head supported by a forehead and chin rest. Responses were collected using Magic Trackpad 2, a 
pointing device (16×11.5 cm2) with a tactile sensor operating at ~90 Hz (Apple Inc). Eye position was 
monitored online at 1000 Hz using an infrared eye tracker (SR Research). Stimulus presentation and 
response registration were controlled by a script written in Psychtoolbox and run using Matlab (The 
Mathworks Inc).

Stimuli
Memory stimuli consisted of randomly oriented Gabor patches (wavelength of the sinusoid, 0.65° 
of visual angle; s.d. of Gaussian envelope, 0.5°) presented on a uniform mid-gray background. The 
contrast of Gabor patches varied between experiments (see below). Memory stimulus positions were 
randomly chosen from a set of 10 equidistant locations on the perimeter of an invisible circle with 
radius 6° centered at fixation. At the start of each trial, a black fixation annulus was shown (r = 0.15° 
and R = 0.25°) in the display center. Once steady fixation was registered, the size of the inner radius 
increased (r = 0.2°). Observers perceived this change as the annulus becoming thinner. The fixation 
annulus then stayed visible throughout the trial. Items were cued for recall by displaying a black arrow 
(2° length) extending from the center of the display and pointing to one of the previously occupied 
locations without overlapping with it.

Procedure
Each trial started with presentation of the central fixation annulus. Observers were required to main-
tain gaze fixation for 500 ms within a radius of 2° around the central annulus in order for a trial to 
proceed. Following stable fixation, the appearance of the fixation annulus changed, indicating that the 
memory array would appear in 500 ms. The memory sample array consisting of 1, 4, or 10 randomly 
oriented Gabor patches was then presented. This was followed by a delay period and finally a cue 
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display, indicating to observers to report the memorized orientation of an item previously displayed 
at the indicated location.

Observers were instructed to reproduce the remembered orientation as accurately and as quickly 
as possible by executing a single movement of their index fingertip over the surface of the touchpad 
located centrally in front of them. Simultaneously with the observer’s movement, a blue line appeared 
on the screen, extending from the center of the screen and mimicking the observer’s response in 
real time. The response was terminated if one of the following conditions was satisfied: the observer 
stopped movement for 500 ms; the observer lifted their finger from the touchpad; or the response 
line reached the edge of the display. This was followed by a feedback display, consisting of the actual 
orientation (shown with a white line) and reported orientation (shown with a blue line) overlaid at the 
location of the cued item. The recalled orientation was calculated as the angle of the line connecting 
a starting point and an endpoint of hand movement on the touchpad.

Observers were required to maintain central fixation during the stimulus presentation and delay 
phase. If gaze position deviated by more than ‍2◦‍ a message appeared on the screen, and the trial was 
aborted and restarted with newly randomized orientations. Participants completed the task in blocks 
of 50 trials, and each block corresponded to one experimental condition. The order of blocks was 
randomized for every observer. At the beginning of the testing session observers familiarized them-
selves with the task and experimental setup by doing at most 50 practice trials.

Experiment 1
In Experiment 1 we investigated the temporal dynamics of VWM fidelity over short delays by presenting 
observers with sets of stimuli of variable size and then cueing one of them for recall after a variable 
delay relative to the stimuli offset. A typical trial sequence is shown in Figure 3A. The memory sample 
array (Michelson contrast = 0.5) was presented for 200 ms. In 50% of trials, the stimuli changed phase 
(by 180°) and contrast (Michelson contrast = 1) for the last 50 ms of presentation, while remaining at 
the same orientation. This manipulation was intended to minimize retinal after-effects (see, e.g., Kelly 
and Martinez-Uriegas, 1993, for similar techniques and Appendix 1 for validation). The stimuli offset 
was followed by a variable blank delay of 0, 100, 200, 400, or 1000 ms, after which one item was cued 
for recall. In one additional condition, the cue was instead presented simultaneously with the memory 
sample array, indicating an item while it was still visible on the screen (Figure 3B).

Each observer completed a total of 1800 trials, split into 36 blocks. The experiment was organized 
such that half of the observers first completed 18 blocks with phase shift (see above), and the other 
half first completed blocks without phase shift. Except for this constraint, block order was randomized 
for every observer. The testing was divided into four equal testing sessions, each lasting approxi-
mately 1.5 hr, with a separation of at least 1 day between sessions.

Experiment 2
In Experiment 2 we investigated the temporal dynamics of VWM fidelity during encoding. To this 
end, we displayed oriented stimuli for a variable duration and in sets of variable size. The experiment 
was similar to the previous experiment with a few exceptions (Figure 3C). Each trial started with a 
presentation of a fixation annulus, followed by a memory array (Michelson contrast = 0.3). The stimuli 
stayed on the screen for a variable duration of 30, 48, 77, 122, 196, 313, or 500 ms, and were then 
replaced by noise masks (100 ms). Mask stimuli consisted of white noise at full contrast, windowed 
with a Gaussian envelope (0.5° s.d.) and flickering at 35 Hz. At the offset of the masking stimuli, one 
memory item was cued for recall. Each observer completed 21 blocks, for a total of 1050 trials. Blocks 
were spread over two testing sessions, each lasting approximately 1.5 hr, and taking place on different 
days. Observers completed 10 blocks in the first, and the remaining 11 blocks in the second session.
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Appendix 1

Minimizing retinal after-effects
We assessed the method of minimizing retinal afterimages by repeating all measurements, with 
the exception of not using phase shift of stimuli (Figure  3A). We predicted retinal afterimages 
could serve as an additional source of information, but only for a brief period after stimuli 
offset. Therefore, here we expected to see better performance for brief delays compared to 
conditions with phase shift. Appendix  1—figure 1A shows recall error increased with both set 
size and delay. Both of these effects were statistically significant, as well as their interaction (set 
size: ‍F(2,18) = 47.3, p < 0.001, η2 = 0.31‍; delay time: ‍F(5,45) = 48.4, p < 0.001, η2 = 0.26‍; interaction: 

‍F(10,90) = 21.3, p < 0.001, η2 = 0.14‍), reminiscent of findings for data with phase shift.
Next, we focused on the comparison of conditions with and without phase shift of stimuli 

(Appendix  1—figure 1B). We illustrate the difference in performance by subtracting RMSE 
obtained in the condition without phase shift (Figure  4B) from RMSE shown in Appendix  1—
figure 1A. Negative values indicate better performance in a condition without phase shift. 
As predicted, the overall pattern of data suggested performance was comparable for 1 item 
across all delays, and for all set sizes for extreme delays (simultaneous presentation and 1000 
ms), indicated by the difference values around 0. We confirmed the difference in recall error for 
1 item across all delays did not differ consistently with and without phase shift, as neither phase 
shift (‍F(1,9) = 0.03, p = 0.86, η2 < 0.001, BFincl = 0.143‍) nor the interaction of phase shift and delay 
(‍F(5,45) = 0.41, p = 0.89, η2 = 0.00, BFincl = 0.042‍) reached significance. Based on this result, we 
conducted all remaining analyses using only the remaining two set sizes. We ran separate repeated 
measures ANOVAs for each delay using phase shift and set size as factors. The pattern of results we 
observed was clear: performance was comparable with and without phase shift with the simultaneous 
presentation and 1000 ms delay (phase shift, ‍F(1,9) ≤ 1.08, p ≥ 0.33, η2 ≤ 0.002, BFexcl ≥ 3.62‍; interaction, 

‍F(2,18) ≤ 0.8, p ≥ 0.44, η2 ≤ 0.02, BFexcl ≥ 3.39‍), while for the remaining intermediate delays recall error 
was consistently lower when phase shift was omitted (phase shift, ‍F(1,9) ≥ 5.8, p ≤ 0.039, η2 ≥ 0.06‍; 
interaction, ‍F(1,9) ≤ 2.8, p ≥ 0.13, η2 ≤ 0.001‍).
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Appendix 1—figure 1. Minimizing retinal after-effects. Cancelling retinal afterimages. (A) Experiment 1 RMSE 
for trials without phase shift. (B) Differences in RMSE between trials with and without phase shift across set size 
and delay conditions. Negative values indicate better performance in the condition without phase shift. Error bars 
indicate ±1 SEM. N = 10.

Taken together, performance with and without phase shift of stimuli was comparable in 
perceptual condition (simultaneous presentation) and with the longest delay, suggesting phase 
shift did not change visibility or encoding of information into VWM. In contrast, we found strong 
evidence that observers had access to an additional source of information over intermediate delays 
when phase shift was not used, demonstrated by a better recall performance from 0 ms to 400 ms 
delay. Specifically, this source of information was available immediately after stimuli offset and was 

https://doi.org/10.7554/eLife.91034
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short-lived, consistent with the theoretical description of retinal afterimages (Tsuchiya and Koch, 
2005).

https://doi.org/10.7554/eLife.91034
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Appendix 2
Swap error estimates
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Appendix 2—figure 1. Swap error estimates. (A and B) Probability of swap errors estimated from empirical data 
using the three-component mixture model (Bays et al., 2009) in Experiment 1 (A) and Experiment 2 (B). (C and D) 
Probability of swap errors in best-fitting dynamic neural resource (DyNR) model in Experiment 1 (N = 10) (C) and 
Experiment 2 (N = 13) (D). Error bars indicate ±1 SEM.
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Appendix 3
Alternative models’ fits
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Appendix 3—figure 1. Experiment 1 behavioral data and model fit for the dynamic neural resource (DyNR) model 
without sensory persistence after stimulus offset. (A) A version of the DyNR model with equal diffusion across set 
sizes. (B) A version of the DyNR model with diffusion that scales with set size. Error bars and patches indicate ±1 
SEM. N = 10.
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Appendix 3—figure 2. Experiment 2 behavioral data and model fit for the neural model without sensory 
persistence after stimulus offset. (A) A version of the dynamic neural resource (DyNR) model without sensory 
persistence. (B) Separate fits of the simplified neural model to each exposure time. Error bars and patches indicate 
±1 SEM. N = 13.
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Appendix 3—figure 3. Behavioral data and model fit for a neural model with the direct read-out of information 
from sensory memory for (A) Experiment 1 (N = 10) and (B) Experiment 2 (N = 13). Error bars and patches indicate 
±1 SEM.
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Appendix 3—figure 4. Behavioral data and model fit for the dynamic neural resource (DyNR) model without the 
cue processing time for (A) Experiment 1 (N = 10) and (B) Experiment 2 (N = 13). Error bars and patches indicate 
±1 SEM.
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Appendix 3—figure 5. Behavioral data and model fit for a neural model with constant accumulation of 
information into working memory (WM) for (A) Experiment 1 (N = 10) and (B) Experiment 2 (N = 13). Error bars and 
patches indicate ±1 SEM.
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Appendix 4

Additional dataset 1
To further investigate the role of diffusion in memory dynamics, we analyzed an additional dataset 
collected in our lab (Tomić et al., 2024). In this experiment we varied the set size and delay duration 
similar to Experiment 1. In contrast to Experiment 1, we used longer memory delays, which allowed 
us to examine the diffusion mechanism on a more suitable time scale. Moreover, memory delays 
used in this study are out of reach of the decaying sensory information, enabling us to investigate 
the diffusion without changes in the neural signal strength post-cue.

Methods
Ten observers (six females, four males, aged 18–34) took part in this experiment. The data for this 
experiment was collected using the same equipment and the testing setting as described for the 
main experiments. A typical trial sequence is illustrated in Appendix 4—figure 1. Each trial began 
with the presentation of a central annulus which served as a fixation point. Once a stable fixation 
was achieved, the inner annulus radius changed indicating that stimuli would appear in 500 ms. 
The memory sample array was then presented for a duration of 500 ms. The array consisted of 
one or three randomly oriented black bars (length 2.8°). Each bar was positioned in one of six 
predetermined locations equally distributed around the circle with a radius of 5° around center of 
the screen. Each bar was presented along with a placeholder circle (radius 1.5°).

Fixation Stimulus
500ms Delay

1000–7000 ms
Cue

Response

Appendix 4—figure 1. Experimental procedure. Stimuli are not drawn to scale.

Memory array presentation was followed by a memory delay during which fixation circle and 
placeholders stayed visible. The retention interval was either 1 s or 7 s long. After that, one stimulus 
was randomly cued for recall. The cue consisted of a second, larger circle drawn around one of 
the placeholders. Observers were instructed to start rotating a response dial (Griffin Technology 
PowerMate USB) once they were ready to respond. After the rotation of the response dial was 
detected, a randomly oriented black bar was displayed within the placeholder. Observers were 
instructed to rotate the dial until the displayed bar matched the remembered orientation of the 
cued item. Observers confirmed their response by pressing the dial. Trials with different set sizes and 
delay durations were randomly interleaved.

Eye movements were monitored from the beginning of the trial until stimuli offset, and observers 
were required to hold steady fixation during that period. If the gaze position deviated by more than 
2° a message appeared on the screen and the trial was aborted and restarted with new orientations. 
Each observer completed 700 trials, divided into two sessions and each consisting of seven equal 
blocks. Two sessions were separated by at least 1 day, and each lasted approximately 1 hr. At the 
beginning of each session observers familiarized themselves with the task and experimental setup 
by doing at most 50 practice trials.

Results
Behavioral data
Recall performance is shown in Appendix 4—figure 2. As predicted, response error increased with 
set size and memory delay. A repeated measures ANOVA revealed a significant effect of set size 
(‍F(1,9) = 111.17, p < 0.001, η2 = 0.76‍) and memory interval (‍F(1,9) = 58.14, p < 0.001, η2 = 0.12‍), and their 
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interaction (‍F(1,9) = 10.66, p = 0.01, η2 = 0.02‍) on response error. Moreover, conducting paired t-tests 
within each set size revealed recall error increased with the delay with set size 1 (‍t(9) = 5.83, p < .001, d = 1.84‍) 
and set size 3 (‍t(9) = 5.78, p < 0.001, d = 1.83‍). The interaction effect was a consequence of a larger 
increase in error with delay for set size 3 compared to set size 1 (‍∆RMSE = RMSE7000ms − RMSE1000ms‍). 
These results are consistent with Experiment 1, corroborating our finding that increasing the set size 
and delay time have a disadvantageous effect on memory fidelity.
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Appendix 4—figure 2. Behavioral data and model fit for Experiment 1a. Error bars and patches indicate ±1 SEM. 
N = 10.

Neural model
We fitted the DyNR model to the data to test whether noise-driven diffusion is sufficient to account 
for changes in recall fidelity with longer memory intervals. We applied a simplified version of the 
model without sensory decay and VWM accumulation components. This was justified given that 
estimate of sensory decay from Experiment 1 was shorter (mean life  ‍τ ‍ = 0.21) than the shortest 
interval used in this experiment (1 s). Moreover, based on our findings in Experiment 2, we argue that 
a display duration of 500 ms is sufficient to fully encode objects into VWM.

Curves in Appendix 4—figure 2 show fits of the model with ML parameters (mean ± SE: population 
gain  ‍γ‍ = 385.02 ± 208.3, tuning width  ‍κ‍ = 2.67 ± 0.43, cue processing constant  ‍b‍ = 0.68 ± 0.67, 
base diffusion  ‍σ

2
diff ‍ = 0.009 ± 0.001, swap probability p = 0.005 ± 0.002). The model provided an 

excellent quantitative fit to response distributions and summary statistics (Appendix 4—figure 2), 
successfully explaining the adverse effects of set size and memory interval on recall fidelity. Critically, 
and consistent with results from Experiment 1, the proposed DyNR model provided a better fit to 
human response error compared to the matching model without diffusion (ΔAIC = 144.75) or the 
model in which diffusion rate increases with set size (ΔAIC = 42.3). In conclusion, this result shows 
that variability in representations over longer memory intervals can be fully accounted for by noise-
driven accumulation without changes in the representational signal (Schneegans and Bays, 2018; 
Panichello et al., 2019; Wolff et al., 2020).
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Appendix 5

Additional dataset 2
To further validate predictions of the DyNR model we fitted it to an existing WM study (Experiment 
1 in Bays et al., 2011). This study focused on the role of temporal dynamics during WM encoding, 
thereby addressing the same question as our Experiment 2. In contrast to our Experiment 2, 
Bays et al., 2011, used a longer delay period (1100 ms), precluding the strengthening influence 
of decaying sensory information on recall. This dataset therefore isolates the initial information 
accumulation process during stimuli presentation.

Methods
The observers (N=32) performed a continuous report task in which a variable number of oriented 
bars was presented for a variable duration, followed by a pattern mask (100 ms) and a 1 s delay 
period after which one of the items was probed for recall. Set size was manipulated between 
observers and exposure duration was manipulated within observers. Each observer performed 100 
trials per exposure duration, for a total of 25,600 trials in the study. A more detailed description of 
the experiment is provided in Bays et al., 2011.

Analysis
Considering only exposure duration in this experiment was manipulated at the observer level, we 
decided to expand our modeling approach by employing a Bayesian hierarchical method as a 
compromise between fitting the data for each observer (i.e. set size) independently and pooling the 
data across all observers. Using a Bayesian hierarchical modeling, individual-observer parameters 
are considered samples from population distributions, whose means and variances are estimated 
based on all available data. In general, this approach has a desirable characteristic of constraining 
individual-level parameters with the population-level distribution and producing meaningful 
parameter estimates when a model is fitted across separate groups. The dynamic neural model 
fitted to the data is identical to the model fitted in Experiment 2, with the exception that here 
we assumed any existing post-stimulus sensory activity completely diminished by the time of the 
cue (1100 ms post-stimulus offset), and therefore we did not model sensory decay here. To obtain 
the hierarchical fit, we used the differential evolution Markov chain algorithm (Braak, 2006). All 
individual-level parameters were samples drawn from normal (i.e. Gaussian) distributions, with 
corresponding mean and standard deviation being constrained by uniform hyperprior distributions. 
We collected 240,000 post-warmup samples across 12 chains and computed median and 95% 
equal-tailed intervals (ETI) of posterior distributions to obtain the group and individual-level 
parameter estimates. Prior specifications and empirical data for all analyses can be found along 
with the published code.

Results
Appendix  5—figure 1 and Appendix  5—figure 2 show empirical distributions and summary 
statistics across all conditions. Similar to Experiment 2, increasing the exposure duration 
(‍F(7,196) = 110.9, p < 0.001, η2 = 0.188‍) and decreasing the set size (‍F(3,28) = 22.83, p < 0.001, η2 = 0.53‍) 
had beneficial effect on response error. Interaction of exposure duration and set size was significant 
(‍F(21,196) = 3.13, p < 0.001, η2 = 0.02‍). Critically, the pattern of memory fidelity dynamics largely 
matches the pattern observed in Experiment 2, with response errors decreasing rapidly as 
presentation duration was increased from the minimum duration, saturating at longer durations. 
This pattern was consistent across all set sizes, which only differed in the absolute error.

These dynamics were accurately predicted by the DyNR model, both at the level of response 
distributions (curves in Appendix 5—figure 1) and summary statistics (curves in Appendix 5—figure 
2). The parameters used to generate model predictions were obtained by taking the individual 
observer’s posterior medians. We observed the following hyperparameters (median and 95% ETI 
of hyperposterior): population gain  ‍γ‍ = 109.47 (88.1–133.57), tuning width  ‍κ‍ = 3.23 (2.6–4.03), 
sensory rise time constant  ‍τrise‍ = 0.0049 (0.0019–0.0091), VWM accumulation time constant  ‍τWM‍ 
= 0.067 ±(0.051–0.087), cue processing constant  ‍b‍ = 0.423 (0.093–0.8436), base diffusion  ‍σ

2
diff ‍ = 

0.095 (0.057–0.149), spatial uncertainty time constant  ‍τspatial‍ = 0.031 (0.022–0.041), swap probability 
p = 0.02 (0.011–0.034).
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Appendix 5—figure 1. Empirical recall error distributions (black circles) from Experiment 1 in Bays et al., 2011, 
and the dynamic neural resource (DyNR) model fits to the data (colored curves).
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Appendix 5—figure 2. Summary statistics (black circles) from Experiment 1 in Bays et al., 2011 and the dynamic 
neural resource (DyNR) model fits to the data (colored curves). The DyNR model was fit to the distributions of recall 
errors shown in Appendix 5—figure 1. Error bars and patches indicate ±1 SEM. N = 32.
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